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The Electric Quadruple Contribution to the

Circular Birefringence of Nonmagnetic Anisotropic

Chiral Media: A Circular Waveguide Experiment
Isak Petrus Theron and Johannes Hendrik Cloete

Abstract— Constitutive relations which include electric

quadruple terms, in addition to electric and magnetic dipole
terms, are used to describe the “optical activity~ in particular
the circular birefringence, of an anisotropic chiral medium which
is nonmagnetic. The resulting permittivity and chirality tensors

are then used to predict the rotation of the polarization plane of
a linearly polarized wave propagating in a circular waveguide
filled with the medium. The numerical predictions were tested

by measurements between 2.4 and 4 GHz on a 2 m long artificial

crystal in a circular wavegnide and it was found that the rotation
of the polarization was within 13 ?ZOof the predicted value-good

agreement after considering the possible sources of error. It is

thus established that the effect of electric quadruples must be
included when modeling the optical activity of anisotropic chiral

media in the long wavelength regime. The anisotropic chiral

media which are dealt with here can be classified according to
the crystallographic point groups to which they belong, and they
may therefore also be considered to be artificial crystals.

I. INTRODUCTION

T HE 1979 paper by Jaggard et al. [1] is often cited

as a key paper in the microwave engineering literature

on artificial chiral media and their possible applications [2],

[3]. In their paper, Jaggard et al. give a phenomenological

explanation of the optical activity of an artificial isotropic

chiral medium, composed of randomly oriented conducting

helices embedded randomly in an isotrop> dielectric ~ost.

The :esultin~ constitutive relations 8 = EE – j[g and H =

~– 1B – j<E, are often called the Post relations [2] because

they appear in Post’s 1962 book [4, p. 172]. Only the induced

magnetic and electric dipole moments were considered in

the physical model of Jaggard et al. although molecular

physicists and chemists already knew, a decade earlier, that

electric quadruples may also contribute to optical activity

[5], [6]. However, as also shown by Nakano and Kimura [5]

and Buckingham and Dunn [6], the individual contributions

of the induced electric quadruple moments cancel due to

macroscopic averaging, in the case of a “random” or isotropic

medium as considered by Jaggard et al. Thus their model was

appropriate, although it is not clear that they had considered the

effect of the electric quadrttpoles and found it to be negligible.

Interest in synthetic anisotropic chiral materials is growing
and to deal with them theoretically the constitutive relations
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for the isotropic case are usually generalized by allowing

the scalar parameters to become second rank tensors, e.g.,

[7]–[1 1]. However, the physical validity of the resulting de-

scription can not be taken for granted because now the effects

of the electric quadruples are cumulative [5], [6] and must

be taken into account.

In 1992 Graham, Pierrus and Raab [12] showed that origin

independence requires that electric quadruple moments must

also be included when magnetic dipole moments are consid-

ered in multipole descriptions of nonmagnetic matter. A theory

is origin independent if its predictions are independent on the

location of the origin to which the multipole moments Me

referred. This form of translational invariance is considered tc)

be an essential feature in theories of modern physics.

Accordingly, Raab and Cloete [13] used constitutive rela-

tions, expressed in the electric quadrupole-magnetic dipole

approximation, to study the optical activity of nonmagnetic

chiral crystals and gases. Subsequently Graham and Raab [14j

and Theron [15], [16] showed that the constitutive relations

derived from the multipole tensors can be written in the form

3=z. E+j~.2 (1)

g=j~T.z+p;lg (2I

where

Q@ = G&p + %@

<.D = G;p – ~ w%6a76.

with a~~, G~9 and a~p~ the polarizability tensors character-
izing the medium. They result from, respectively, the electric

dipole, the magnetic dipole and the electric quadrttpole mo-

ments. Here the Einstein notation [17, Appendix B] is used.

Greek subscripts denote any of the Cartesian coordinates with

a repeated subscript implying a summation over the three

coordinates. The Kronecker delta, ti~p, equals 1 when a = ~

and zero otherwise, and CPT6is the Levi–Civita or alternating

tensor [17, Appendix B]. The time convention exp(+jwt) is

implicit.

This theory, being generally applicable to both anisotropic

and isotropic matter, was used here to determine the influence

of the electric quadrnpole term in modeling anisotropic chiral

media.

It is emphasized that although the “chirality parameter” $

in (1) and (2) appears to arise from a simple generalization

of the Post constitutive relations for isotropic chiral matter, it
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Fig. 1. An elementary chiral structure or enantiomorph,
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Fig. 2. A uniaxial lattice in the 422 point group. The crystal is constructed
by repeating this layer in the :-direction.

explicitly includes the contribution of the electric quadruples,

in addition to that of the magnetic dipole moments.

II. AN ARTIFICIAL CRYSTAL AND

ITS CONSTITUTIVE RELATIONS

Anisotropic media which exhibit chiral activity at mi-
crowave frequencies apparently do not occur naturally. How-

ever, an artificial crystal can be made by arranging small chiral

structures, or enantiomorphs, on a regular lattice subject to cer-

tain symmetry requirements [15], [16]. A practical crystalline

medium was made by embedding the simple chiral structure
in Fig. 1 in a point group 422 lattice [18] as shown in Fig. 2.

The medium is fairly dilute to ensure simple coupling

between neighboring structures so that the multipole densities

can be calculated from the multipole moments of a single

structure. It is also required that the frequencies be kept low

enough for the medium to resemble a continuum rather than a

diffraction grating. The treatment is thus restricted to the low

frequency regime [13]. However, the dimensions and spacing

of the chiral objects are chosen to make experimentation

practical at microwave frequencies, thus the frequencies are

not “low” in an absolute sense.

The 2 to 4 GHz band was chosen for the experiments and

it was required that the total length of the individual chiral

hooks be about 9 mm to ensure that they would be excited

far below the half-wave resonance frequency. Thus a medium

was constructed using structures with lZ = lY = 3.12 mm

and lZ = 3.14 mm made from phosphor-bronze wire with

diameter 0.3 mm. The structures were spaced 9.3 mm in the

z-direction, and 6.5 and 8 mm, respectively, in the tangential

plane depicted in Fig. 2. The multipole tensors for this medium

were computed using an electroquasistatic moment method

formulation [15], [19], resulting in

cizz = avv = 4.48 x 10–13 C/Vm

a.. = 8.29 x 10–13 C/Vm

G;z = G’
YY = –w 1.16 X 10-16 A/V

G;z = O

aZZY = aZYZ = —aYZZ = —ayzz = –2.34 X 10-16 C/V

and

c.Z = 1.01 X 10-11 C/Vm = 1.14c0

6,, = 1.06 X 10 ’11 C/Vm = 1.2060

<zz = -w2.54 X 10-16 A/V

<,, = w 2.55 x 10-16 A/V

where the structures have been embedded in a dielectric foam

having ~. = 1.09 for manufacturing purposes. It is evidently

predicted that the electric quadruple term aap~, makes a

significant contribution. Indeed, since G~Z M ~ waZVz, neglect

of the electric quadruple reduces the predicted value for the

tangential chirality parameter, &, by approximately half.

The analysis of a linearly polarized plane wave propagating

through an unbounded medium characterized by these parame-

ters reveals that the polarization plane will rotate by about 6.5

degrees per meter [15], [16]. It would be highly impractical

to measure this using a free space system, thus waveguide

measurements were preferred.

The remaining burden of this paper is a description of

the circular waveguide experiment, and the supporting theory,

which tests the above prediction.

III. WAVEGUIDE PROPAGATION

Waveguides filled with isotropic chiral media—so-called

chiro-waveguides—have received considerable attention

[20]–[23]. An anisotropic medium with dyadic permittivity

and permeability, but a scalar chirality parameter, is studied

in [7], while [24] considers a medium where the chirality

dyadic has zero diagonal terms as would be produced by a

crystalline distribution of the so-called Q-medium [25]. A

general solution is also given in [26] using series expansions

related to the modes in a nonchiral waveguide. As will be

shown later, the rotation of the polarization plane is due

to the difference in the propagation constants of the two

dominant modes. Since this difference is much smaller than
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the constants themselves, a solution which does not require a

series expansion is presented here.

The propagation constant inside a rectangular waveguide

filled with an isotropic chiral medium is solved numerically in

[27], [28] and analytically, using a series of sinusoidal func-

tions, in [29]. Thus the solution for a rectangular waveguide

requires either an approximate series or a numeric solution,

while that for the circular waveguide can be found analytically.

A circular waveguide was therefore chosen for the experiment.

Although the medium parameters discussed above are defined

for Cartesian coordinates, they remain the same for cylindrical

coordinates since the tangential components are independent

of direction [15].

The fields in the waveguide can now be found by solving

Maxwell’s equations subject to the boundary conditions and

the constitutive relations in (1) and (2). Appendix A gives the

fields satisfying the boundary condition Ez = O at r = a for an

assumed z-dependence of the form e–~@%where /? = f?’ +j@”

is an unknown constant of propagation. The fields in the

waveguide must also satisfy the boundary condition E+ = O

at r = a and the value of ~ is determined to satisfy this

condition. Setting r = a in (14) and writing .lm– 1[x] in terms

of Jn [z] and Jn+l [z] results in

hb&+l [k@] + hc~n [~gC4Jn[~fa]

– haJn[kga]Jn+I [kfa] = O (3)

where

{
h. = kf ~’kj – 5($(Q. + (,,) + 2@2&)2

}

{
hb = kg g’k$ – : (I%;(~zz + &z) + 2f32&Z)2

xx }

h. = :(f’ – g’)(k; – 2wM&.z.)

with the constants as defined in Appendix A. The solution for

@will, in general, be complex. (It is possible to have complex

~ even in lossless media—the modes are then referred to as

complex modes [30]–[32].) For each value of n, ,b’ can have

multiple solutions each of which represents a hybrid mode that

will be able to propagate in the waveguide. Here the modes

will be denoted Tnm, where m indicates the mth solution of/3

for a given n. A bar above the n indicates that n is negative;

for example, Til is the mode with the first solution of,6 when
~ = —1.

For nonchiral waveguide modes where the propagation

constant is either purely real or purely imaginary, the cut-off

frequency can be defined as the frequency for which ~ = O.

Setting @ = O in (3) and solving for frequency, yields a real

valued result. Thus at this frequency, jC, the modes are not

complex and ~, is defined as the cut-off frequency. For chiral

guide it was found that jC is the same for the Tnm and Tfim

modes. It was also discovered that at jC one of the two modes,

either T~~ or Tm, in addition to @ = O has a positive
real solution of ~. This is the propagation constant for the

particular mode—thus it has a nonzero propagation constant

at cut-off and will be able to propagate at frequencies slightly

below cut-off. For the parameters considered here this applies

to frequencies within 10-4% of ~C.

TABLE I
CUT-OFF FREQUENCIESIN GHz FORA CHIRAL WAVEGUIDE WITH DIAMETER

79 mm, AND EZX = 1,01 X 10–11 C/Vm, 6.= = 1.06 x 10–11

C/Vm, fxz = –u2.54 x 10–16 AN AND~zz = w2,55 x 10–16

AN. THE CUT-OFF FREQUENCIESFORTHE TEm MODES ARE
THE SAME AS THOSE FORTHE Tn ~ MODES. FOR COMPARISON,

THE CUT-OFF FREQUENCIESFORA WAVEGUIDE FILLED WITH A
HOMOGENEOUS,NONCHIRAL MEDIUM WITH e = CZx ARE ALSO GIVEN

Using the parameters from Section II and a waveguide

radius of a = 39.5 mm in (3) yields the cut-off frequencies

for the first few modes as shown in Table I. The cut-off fre-

quencies for a waveguide filled with a homogeneous, nonchiral

dielectric with e = cXZ are given for comparison.

There is a close correspondence between the cut-off frequen-

cies of the chiral waveguide and the nonchiral waveguide, as

can be expected for the small values of the chirality parameters

used here. (Caveat: consideration of only the first two decimals

will lead to the incorrect conclusion that the correspondence is

exact.) The field distributions will be similar for modes with

closely related cut-off frequencies. The fact that each nonchiral

mode is paired with a chiral mode, indicates that the solution of

(3) yields all the modes in the chiral waveguide. In accordance

with propagation in isotropic waveguide it thus follows that

the dominant modes are T1l and Til.

IV. ROTATION OF THE POLARIZATION PLANE

From the expressions for the fields inside the waveguide

(13) to (15) it follows that the Til and Tll modes have

the same field distribution on the interface, one rotating

clockwise and the other anti-clockwise on this plane. As the

field distribution of these two modes closely resemble that

of the TE1l mode, it may be assumed that these two modes

will be excited with essentially equal amplitudes by a TE11

mode incident on an air-ehiral interface inside the waveguide

and that only extremely weak higher order modes will be

excited. The rotation is therefore caused by the difference in

the propagation constants of these two modes only. As can be

seen from the @ and z-dependence, the @-distribution rotates

by ~’z radians in the clockwise direction for the Tll mode,

and in the anti-clockwise direction for the Til mode. Thus

the rotation of the polarization plane for the sum of these two

modes is

hot = + (P4- @+) (4)

radians per meter. The positive ~ direction is defined as for

the conventional polar angle.
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Fig. 3. Schematicrepresentationof the waveguide

V. THE EXPERIMENT

The antennas of the experimental system were designed to

excite or receive a linearly polarized field along a centerline of

the waveguide cross-section and to act as transitions between

the coaxial cables connected to the network analyzer and the

waveguide containing the sample.

Each antenna was a thin microstrip dipole with length about

70 mm, about 90% of the waveguide diameter, made on

a thin dielectric substrate by photolithography. The dipole

was connected, without balun, to a semirigid coaxial cable.

It was established by free-space pattern measurements and a

waveguide cross-polarization measurement that a balun was

not necessm-y. The coaxial feed passed through a 28-mm layer

of polystyrene and a 45-mm layer of absorbing material, to

minimize multiple reflections, before going through a ground

plane that was attached to the end of the waveguide. The

resulting structure is round and fits snugly in the pipe, allowing

it to center itself as it is turned.

Both antennas are placed in air filled, thus nominally “free-

space,” regions of the guide, on either side of the chiral

crystal. Thus the transmitting antenna will strongly excite the

dominant TEII mode. In the empty waveguide the lowest

higher mode that can be excited by a balanced antenna is the

TM1l mode. This corresponds to the TM mode which will

not propagate at frequencies below 4.2 GHz in the crystal,

and in the free-space section its cut-off frequency will be even

higher. Thus, provided the frequency is limited to below 4.2

GHz and the antennas are well balanced, higher order modes

will not have a significant effect on the measurements. The

resulting theoretical rotation, calculated between 2.2 and 4

GHz, is shown in Fig. 8.

A waveguide was made of a 4 m length of aluminum pipe

with inside diameter 79 mm cut into three lengths as shown in

Fig. 3 and connected using flanges which allowed the sections

of pipe to be flush with each other. When measuring a rotation

angle of 100—which was the expected rotation at 3 GHz—the

component orthogonal to the incident polarization will be

about 15 dB lower than the component parallel to the incident

polarization. Thus it was required that, when exciting a TE1l
mode in the empty waveguide, the component orthogonal (the

cross-polarized component) to the incident polarization plane

must be more than 25 dB less than the component in parallel

to it. The final assembly had an isolation of 30 to 45 dB

with the incident field polarized in the region of four distinct

angles labeled q5= 0°,75°, 180° and 255°. (The isolation for

other angles was worse, due to waveguide imperfections.) The

measured data were defined as the average of four individual

sets of data where the measurement for each angle was done

with the transmit and receive antenna oriented at one of the

above angles, and then repeated with the receive antenna

rotated through 180°.

The crystal was constructed by embedding the prefabricated

chiral structures in a 79.5 mm diameter closed cell Polyfoam

disk. The lattice and orientation of the structures are shown in

Fig. 4. Each precut disk, 4.13 mm thick, was punctured using a

tool made with needles in all the hole positions. The structures,

cut and bent beforehand from phosphor-bronze wire, were then

hooked through the disks. The foam was flexible enough for

the bends to go through without any damage to either the

wires or the foam. This was done by hand by a number of

students. The disks dented slightly inwards to the thickness

corresponding to the length of the z-axis leg, keeping the

z- and y-axis legs in approximate registration. Each disk

contained a small notch to allow alignment. These disks were

alternated with 5.17 mm thick spacers and the whole crystal

was glued together with a contact spray in sections of about

200 mm long. A thin plastic tape was wound round the

full circumference to ohmically isolate the outer structures

from the waveguide wall. It further compressed the slightly

oversized disks allowing the crystal to slide into the waveguide

without too much friction. Photographs of the construction are

shown in Fig. 5.

VI. RESULTS

Fig. 6 shows the copolarized electric field measured by the

receive antenna when oriented at an angle, ~, relative to the

polarization of the incident mode. The measurement was done

at 3 GHz with and without the 2 m long crystal in place.

The shift caused by the chiral activity can clearly be seen.

The pattern follows the sinusoidal distribution expected for a

linearly polarized field, with the depth of the nulls indicating

that both fields are highly linearly polarized. It can therefore be

assumed that there is very little corruption due to higher order

modes. This assumption applies through the whole frequency

band between 2.4 and 4 GHz.

The amplitude of the wave after propagating through the

chiral medium is about 1 dB lower than for the empty

waveguide, due to losses in the medium. This attenuation does

not significantly affect the experimental results, although the

analysis was done for a lossless medium.

In Fig. 7 the magnitude of the field transmitted through

the crystal is plotted as a function of frequency for various

angles of the receive antenna. These graphs shows clearly the

“rotatory dispersion” first viewed by Arago and Biot in 1811
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Fig. 4. Disktike building element of the crystat. Only the thick lines are

visible from the front of each disk. The thin lines are at the back of the dkk.

and 1812 [34] since it is evident that the higher the frequency,

the higher the rotation of the null position. The angle ~ in the

figure indicates the amount by which the receive antenna is

rotated away from its “null” position in the empty waveguide.

The rotation angle as function of frequency was measured

in two different ways. A direct mechanical measurement was

obtained by searching for the transmission null and reading

the angle from a degree scale on the back of the antenna with

0° corresponding to the null position for the empty guide. The

angle was also computed from the amplitude and phase of the

measured transmitted E= and Ey components, by applying

the polarization ellipse theory [35, pp. 19–21]. While the

mechanical positioning error is estimated to be about 10 to

2° for arbitrary angles, it is possible to align the antennas

very precisely in the +90° orientations by searching for the

null in the empty waveguide—thus the “computed” rotation

angle is presumably more accurate than the mechanical one.

In Fig. 8 both measurements are compared with the theoretical

predictions.

The transmission (Szl ) measurements were made using an

HP 851OC network analyzer. Calibration was done with the

empty waveguide and a 3.5 ns time domain gate was employed

to reduce the effect of multiple reflections in the waveguide

and transitions.

VII. DISCUSSION OF THE RESULTS

Scaling of the theoretical prediction reveals that the dis-

crepancy between the measurement and original prediction is

around 1390. This factor is almost constant over the entire

frequency band—thus the circular birefringence of the arti-

ficial crystal is accurately predicted with an apparent error

of approximately 1370 in the numeric values of the medium

parameters. There is a slight deviation from this frequency

(a)

(b)

Fig. 5. Two 1 m long sections of the crystal. The chiral hooks are mounted

in the dark dkks, and the white disks act as spacers. The other photograph

shows the orientation of the chiral hooks on the surface of a disk, and the
grooves in the edge of each disk for registration purposes.

Fig. 6. The solid graph shows the copolarized component of the transmitted
electric field measured with the receive antenna oriented at the angle ~ relative
to the incident polarization direction in the empty guide. The dashed graph
was obtained at 3 GHz for a wave propagating down the waveguide when
filled with the 2 m long crystal.

behavior below 2.6 GHz and above 3.8 GHz which is probably

due to the time domain gating applied to the measurements.
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Fig. 7. The amplitude of the copolarized electric field as a function of
frequency with the receive antenna at different angles of rotation. The angle

C#Jrepresents the angle by which the receive antenna is rotated away from its
null, the cross-polarized position of the empty waveguide. (These angles are
found by averaging the different measurements.) The crystal is 2 m long.
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Fig. 8. Comparison of theoretical and measured rotation angle, &ot. The
crystal, with the parameters given in the paper, is 2 m long. If the quadruple

is ignored in the theoretical predictions, the predicted rotation would be

approximatelyhalf of the value given here.

In seeking the cause of the discrepancy there are a number

of possible error sources that need to be evaluated [15].

Since the frequency dependence is accurately predicted the

fact that the rnultipole moments were computed using a

quasistatic technique [19] probably does not yield a significant

contribution to the error. The multipole moments of the single

structures were computed using a thin-wire technique which,

when compared to a body of revolution code for the test case

of a straight dipole, yielded an error of about 3% [15, 19].
A significant error is caused by the fact that the structures

which fall partially out of the circle shown in Fig. 4 could

not be incorporated in the physical disks—there are in fact

6% less elements than required to yield the volume density

used to calculate the parameters. A further error is caused by

the alignment of the structures on the crystal lattice. In an

isotropic or “random” medium the contribution of the electric

quadruple is averaged out. The slight deviations from the

prescribed lattice, for example a slightly rotated structure or

one with a z-leg not perfectly perpendicular to the disk surface,

can be considered random and will thus tend to decrease the

contribution from the quadruple term. [t also decreases the

effective length of the legs—which can have a significant

effect as shown in the next paragraph.

One of the largest error sources is the uncertainty in the

lengths of the structure legs. It was found by numerical

experiment that a length change of 0.1 mm on the x- and

y-legs can change the result by as much as 10%. As the

manufacturing process resulted in the leg on one side being

sharp, there is an uncertainty as to what an equivalent length

for a flat end would be. The middle of the 0.2 mm long sharp

section was used, and this possibly overestimated the length

of a leg with a flat end. (The end-cap yields a contribution of

almost 20% and in the case of the sharp point it is physically

removed from the geometry [19].)

Most of the significant errors were shown to contribute

toward the measured rotation being less than predicted. As

the effect of the electric quadruple and the magnetic dipole

are approximately equal, ignoring the quladrupole would lead

to a theoretical prediction of about half the present one.

Therefore the measured data lie much closer to the prediction

with the quadrttpole included than without it<ven without

considering the fact that the errors tend to reduce the measured

rotation.

VIII. CONCLUSION

Chiral or optical activity is a second c)rder effect involving

the electric quadruple and magnetic dipole moments [13],

yet, the scattering from a single structure is completely dom-

inated by the first order electric dipole field. Further, the

field of an individual electric dipole may, in general, also

have components orthogonal to the eleetric field which will

contribute to the rotation of the forward scattered electric field.

Nevertheless, in a perfect isotropic or a uniaxial medium,

the electric dipole contributions will cancel exactly. Since

the dipole moment is so dominant in the scattering from a

single structure the question arises whether, for a practical,

and thus imperfect, anisotropic medium such as the 422 point

group crystal considered here, small enrors in the alignment

of the hooks might not yield electric dipole contributions to

circular birefringence in the same order as the scattering by the

magnetic dipole and electric quadrapole moments. For a single

cell consisting of four rotated elements, this might certainly

be the case. However, for a microscopically homogeneous

medium, consisting of many thousands of cells, the random

error due to the electric dipoles of wrongly aligned structures

will tend to cancel each other while tlhe effects due to the

magnetic dipoles and the electric quadruples will always

add—and thus dominate.

A very dilute medium, with low optical activity, was

considered to simplify the numerical modeling. For a dense

medium a more involved calculation of the multipole moments

of a single element would be needed to account for the

influence of the neighboring elements but the effect of the
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electric quadruples would still be comparable to that of the

magnetic dipoles. This is a fundamental theoretical fact [12].

A fully dynamic numerical model would be required beyond

the long wavelength regime. The implication for the multipole

description of the medium properties and the validity of its

representation as a continuum has however not been studied.

Circular dichroism would occur in composites with signifi-

cant conductor and dielectric losses. In this work it is assumed

that such losses are negligible but the formulation of Raab and

Cloete [13] allows for them to be incorporated.

The good agreement between the theoretically predicted and

measured rotation angle as function of frequency has provided

convincing experimental support for the contention [13] that

a physically sound theoretical description of anisotropic chiral

media must take the electric quadruple term into account.

This is also consistent with the theoretical fact that electric

quadruple moments need to be included with magnetic dipole

moments to guarantee that the medium parameters are inde-

pendent of the arbitrary origin to which the multiples are

referred [12].

APPENDIX

CALCULATING ‘rHE FIELDS IN A WAVEGUIDE

In this Appendix the simultaneous solution of Maxwell’s

equations is considered

VXl?=-jw~

vxi?=jw15

and the constitutive relations

fi=z.z+j~.g

R=jgT. fi+fl;lE

where

‘“E ~z !1‘=[+Vs:21

(5)

(6)

(7)

(8)

subject to the boundary condition, Ez = O at r = a, for a

general uniaxial medium inside a waveguide. This yields the

fields inside the waveguide in terms of an integer parameter,

n, that must be chosen and the constant of propagation, (3,

that is found by solving the boundary condition, Ed = O

at r = a. The constitutive relations as defined here remain

valid for both Cartesian and cylindrical vectors, thus since the

boundary conditions are cylindrical, this form is used here.

With an assumed z-dependence of e–~@’ it is a simple

matter to express B. and Bd in terms of the components

of ~ using the r- and @components of (5). This can be

substituted in the constitutive relations and then into the r-

and @components of (6) to find E, and E+ in terms of Ez

and B=. Then the z-components of the two Maxwell equations

yield two equations which can be solved for V~E= and V~BZ

to obtain

V:EZ + blEz + jb2Bz =0 (9)

V:BZ + jb3Ez + b4Bz = O (lo)

where

Similar differential equations for a medium containing

sources were obtained by Olyslager et al. [36] who then

decompose the sources into their TE and TM parts. In the

case of anisotropic media the simple Bohren decomposition

fi+ = ~ + jq~, used for example in [21], no longer applies.

Here the separation is done by linearly combining (10) and

(9) as follows:

V:(E, – jfB,) + (bl + fb3)Ez + j(b2 – fb4)Bz =0

V?(EZ – jgBz) + (bl + gb3)Ez +j(b2 – gb4)Bz = O.

1Actually a similar form was introduced in 1907 by Silberstein. See [37,

p. 32].

bs = @;(ezz + ~zz) + 4LLOP2&&ZZ + LLok;(&r + &z)2)2 – 4cz.z.czz(k/?j – 4&w2/32&.)
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The new equations will be independent of each other provided

that f # g. Substituting F = E, – j f B, and G = E, – jgB,

yields separated equations on condition that

bz – (bA –bl)f +b3f2 = bz – (bzi – bl)g+b3g2 = o

which gives the same two possible solutions for f and g. The

requirement f # g can be met by selecting one solution for

f and the other for g

b4 – bl + /(bA – bl)2 – 4bzb3
f=

2bZ

b4 – bl – ~(bb – bl)2 – 4bzb3
g=

2b3

such that

V:F + (bl + fb3)F = V:F + &F = o (11)

V~G+ (bl +gb3)G=V;G+k:G = O. (12)

The general solution of this equation in cylindrical coordi-

nates is

AIJv[kr]e~@ + A2Y. [kr]e~v@

where k = k f for the solution of (11) and k = kg for that

of (12). Jw and Y. are the Bessel functions of the first and

second kind of order v. Since the solution must be continuous

in # and remain bounded at r -+ O, it can be simplified to

F = Al Jn[kfr]e~n4

G = AzJrr [kgr]e~n+

where n = 0,+1,+2,+3, . . .

Setting Ez = Oat r = a and realising that E. is proportional

to fG –- gF yields

from which

which, after

singularities,

F and G can be found. This yields the fields
scaling and using Bessel identities to avoid

can be written as

E, = jA{Jn[k,a](hIJn-l [kfr] + h2Jn+1 [kf r])

–Jn[kfa](h3Jn_l [k~r] + h4Jn+1[kgr])}e~ (n4-p’)

(13)

Ed = –A{Jn[kga](hIJn-l [k~r] – hz.ln+l[kfr])

–Jn[kf a](h3Jn_1[kgr] – h4Jn+1 [kgr-])}e~(~@-pz)

(14)

E. = 2hoA{Jn[kfa]Jn[kgr-] – Jn[kga]Jn[kfr]}e~(no–pzJ

(15)

where

ho =’b2(k: – 4&w2p2&)

hl = kf(k; – 2wowf&z)(wb3f + bzO

– ~owbz(txz + & + .if.zy))

hz = kf (k; + 2pow/?&z)(wb3f – bzO

– uowbz(fm + L. – &y))

h3 = kg(k; – 2powf&m)(wb3g + b@

– ~.wb2(&. + t., + .if.zy))

h~ = kg(k; + 2powf&z)(wb3g – b2P

– L.wbz(t.z + L – .II&./))

for the general uniaxial medium. For the medium discussed

in this paper, &y = O, such that the constants bz, kf, etc. are

given by the simplified equations shown at the bottom of the

previous page.
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