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The Electric Quadrupole Contribution to the
Circular Birefringence of Nonmagnetic Anisotropic
Chiral Media: A Circular Waveguide Experiment

Isak Petrus Theron and Johannes Hendrik Cloete

Abstract— Constitutive relations which include electric
quadrupole terms, in addition to electric and magnetic dipole
terms, are used to describe the “optical activity,” in particular
the circular birefringence, of an anisotropic chiral medium which
is nonmagnetic. The resulting permittivity and chirality tensors
are then used to predict the rotation of the polarization plane of
a linearly polarized wave propagating in a circular waveguide
filled with the medium. The numerical predictions were tested
by measurements between 2.4 and 4 GHz on a 2 m long artificial
crystal in a circular waveguide and it was found that the rotation
of the polarization was within 13% of the predicted value—good
agreement after considering the possible sources of error. It is
thus established that the effect of electric quadrupoles must be
included when modeling the optical activity of anisotropic chiral
media in the long wavelength regime. The anisotropic chiral
media which are dealt with here can be classified according to
the crystallographic point groups to which they belong, and they
may therefore also be considered to be artificial crystals.

I. INTRODUCTION

HE 1979 paper by Jaggard et al. [1] is often cited

as a key paper in the microwave engineering literature

on artificial chiral media and their possible applications [2],
[(3]. In their paper, Jaggard ef al. give a phenomenological
explanation of the optical activity of an artificial isotropic
chiral medium, composed of randomly oriented conducting
helices embedded randomly in an isotropic dielectric host.
The resulting constitutive relations D =¢E — jﬁé and H =
p 1B — j£E, are often called the Post relations [2] because
they appear in Post’s 1962 book [4, p. 172]. Only the induced
magnetic and electric dipole moments were considered in
the physical model of Jaggard et al. although molecular
physicists and chemists already knew, a decade earlier, that
electric quadrupoles may also contribute to optical activity
[5], [6]. However, as also shown by Nakano and Kimura [5]
and Buckingham and Dunn [6], the individual contributions
of the induced electric quadrupole moments cancel due to
macroscopic averaging, in the case of a “random” or isotropic
medium as considered by Jaggard et al. Thus their model was
appropriate, although it is not clear that they had considered the
effect of the electric quadrupoles and found it to be negligible.
Interest in synthetic anisotropic chiral materials is growing
and to deal with them theoretically the constitutive relations
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for the isotropic case are usually generalized by allowing
the scalar parameters to become second rank tensors, e.g.,
[7]-[11]. However, the physical validity of the resulting de-
scription can not be taken for granted because now the effects
of the electric quadrupoles are cumulative [5], [6] and must
be taken into account.

In 1992 Graham, Pierrus and Raab [12] showed that origin
independence requires that electric quadrupole moments must
also be included when magnetic dipole moments are consid-
ered in multipole descriptions of nonmagnetic matter. A theory
is origin independent if its predictions are independent on the
location of the origin to which the multipole moments are
referred. This form of translational invariance is considered to
be an essential feature in theories of modern physics.

Accordingly, Raab and Cloete [13] used constitutive rela-
tions, expressed in the electric quadrupole—magnetic dipole
approximation, to study the optical activity of nonmagnetic
chiral crystals and gases. Subsequently Graham and Raab [14]
and Theron [15], [16] showed that the constitutive relations
derived from the multipole tensors can be written in the form

Il

¢ E+j¢E- B (1)
& E+u;'B @

D
H

where
€aB = €00 + Qg
bap =Ghg — 5 Weoystysa

with aag, G, 5 and asg, the polarizability tensors character-
ising the medium. They result from, respectively, the electric
dipole, the magnetic dipole and the electric quadrupole mo-
ments. Here the Einstein notation {17, Appendix B] is used.
Greek subscripts denote any of the Cartesian coordinates with
a repeated subscript implying a summation over the three
coordinates. The Kronecker delta, 6,4, equals 1 when o = 8
and zero otherwise, and eg.s is the Levi-Civita or alternating
tensor [17, Appendix B]. The time convention exp(+jwt) is
implicit.

This theory, being generally applicable to both anisotropic
and isotropic matter, was used here to determine the influence
of the electric quadrupole term in modeling anisotropic chiral
media.

It is emphasized that although the “chirality parameter” &
in (1) and (2) appears to arise from a simple generalization
of the Post constitutive relations for isotropic chiral matter, it
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Fig. 2. A uniaxial lattice in the 422 point group. The crystal is constructed
by repeating this layer in the z-direction.
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explicitly includes the contribution of the electric quadrupoles,
in addition to that of the magnetic dipole moments.

II. AN ARTIFICIAL CRYSTAL AND
ITS CONSTITUTIVE RELATIONS

Anisotropic media which exhibit chiral activity at mi-
crowave frequencies apparently do not occur naturally. How-
ever, an artificial crystal can be made by arranging small chiral
structures, or enantiomorphs, on a regular lattice subject to cer-
tain symmetry requirements [15], [16]. A practical crystalline
medium was made by embedding the simple chiral structure
in Fig. 1 in a point group 422 lattice [18] as shown in Fig. 2.

The medium is fairly dilute to ensure simple coupling
between neighboring structures so that the multipole densities
can be calculated from the multipole moments of a single
structure. It is also required that the frequencies be kept low
enough for the medium to resemble a continuum rather than a
diffraction grating. The treatment is thus restricted to the low
frequency regime [13]. However, the dimensions and spacing
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of the chiral objects are chosen to make experimentation
practical at microwave frequencies, thus the frequencies are
not “low” in an absolute sense.

The 2 to 4 GHz band was chosen for the experiments and
it was required that the total length of the individual chiral
hooks be about 9 mm to ensure that they would be excited
far below the half-wave resonance frequency. Thus a medium
was constructed using structures with [, = [, = 3.12 mm
and [, = 3.14 mm made from phosphor-bronze wire with
diameter 0.3 mm. The structures were spaced 9.3 mm in the
z-direction, and 6.5 and 8 mm, respectively, in the tangential
plane depicted in Fig. 2. The mulitipole tensors for this medium
were computed using an electroquasistatic moment method
formulation [15], [19], resulting in

Qg = Qyy = 4.48 x 10713 C/Vm
0, =829 x 10712 C/Vm
Gy =Gy =—wl16 x 10716 A/V

G =0
Burzy = pys = —8yzs = —8ysp = —2.34 x 10716 C/V
and

€2z = 1.01 x 107 C/Vm = 1.14¢,
€22 =1.06 x 107 C/Vm = 1.20¢,
boo = ~w2.54 x 10718 A/V

€. =w255x 1071 A/V

where the structures have been embedded in a dielectric foam
having €, = 1.09 for manufacturing purposes. It is evidently
predicted that the electric quadrupole term ang, makes a
significant contribution. Indeed, since G, ~ § wayy ., neglect
of the electric quadrupole reduces the predicted value for the
tangential chirality parameter, £,,, by approximately half.

The analysis of a linearly polarized plane wave propagating
through an unbounded medium characterized by these parame-
ters reveals that the polarization plane will rotate by about 6.5
degrees per meter [15], [16]. It would be highly impractical
to measure this using a free space system, thus waveguide
measurements were preferred.

The remaining burden of this paper is a description of
the circular waveguide experiment, and the supporting theory,
which tests the above prediction.

II. WAVEGUIDE PROPAGATION

Waveguides filled with isotropic chiral media—so-called
chiro-waveguides—have received considerable attention
[20]-{23]. An anisotropic medium with dyadic permittivity
and permeability, but a scalar chirality parameter, is studied
in [7], while [24] considers a medium where the chirality
dyadic has zero diagonal terms as would be produced by a
crystalline distribution of the so-called Q-medium [25]. A
general solution is also given in [26] using series expansions
related to the modes in a nonchiral waveguide. As will be
shown later, the rotation of the polarization plane is due
to the difference in the propagation constants of the two
dominant modes. Since this difference is much smaller than
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the constants themselves, a solution which does not require a
series expansion is presented here.

The propagation constant inside a rectangular waveguide
filled with an isotropic chiral medium is solved numerically in
[27], [28] and analytically, using a series of sinusoidal func-
tions, in [29]. Thus the solution for a rectangular waveguide
requires either an approximate series or a numeric solution,
while that for the circular waveguide can be found analytically.
A circular waveguide was therefore chosen for the experiment.
Although the medium parameters discussed above are defined
for Cartesian coordinates, they remain the same for cylindrical
coordinates since the tangential components are independent
of direction [15].

The fields in the waveguide can now be found by solving
Maxwell’s equations subject to the boundary conditions and
the constitutive relations in (1) and (2). Appendix A gives the
fields satisfying the boundary condition E, = 0 at r = a for an
assumed z-dependence of the form e~7%% where 8 = '+ ;3"
is an unknown constant of propagation. The fields in the
waveguide must also satisfy the boundary condition E4 = 0
at 7 = a and the value of § is determined to satisfy this
condition. Setting r = a in (14) and writing J,,_1[z] in terms
of J,[z] and Jp,41[x] results in

hyJny1lkga] + hednlkgal Ty [k sal

— hadnlkgaJnsslkpa) = 0 3)
where
e =kr{ 185 = L2 03(n +6.0) + 26762077}

hb = kg{g,k?; - & (k%(&xw + 5zz) + 2ﬂ2£$$)2}

GJ:IAE
(.f, - g/)(k% - 2wNo;B€acm)

with the constants as defined in Appendix A. The solution for
0 will, in general, be complex. (It is possible to have complex
[ even in lossless media—the modes are then referred to as
complex modes [30]-[32].) For each value of n,3 can have
multiple solutions each of which represents a hybrid mode that
will be able to propagate in the waveguide. Here the modes
will be denoted 1,,,,,, where m indicates the mth solution of 3
for a given n. A bar above the n indicates that n is negative;
for example, 17, is the mode with the first solution of 3 when
n = —1.

For nonchiral waveguide modes where the propagation
constant is either purely real or purely imaginary, the cut-off
frequency can be defined as the frequency for which 5 = 0.
Setting 8 = 0 in (3) and solving for frequency, yields a real
valued result. Thus at this frequency, f., the modes are not
complex and f. is defined as the cut-off frequency. For chiral
guide it was found that f. is the same for the T,,,, and Tk,,
modes. It was also discovered that at f. one of the two modes,
either T),,, or THm, in addition to 8 = 0 has a positive
real solution of . This is the propagation constant for the
particular mode—thus it has a nonzero propagation constant
at cut-off and will be able to propagate at frequencies slightly
below cut-off. For the parameters considered here this applies
to frequencies within 10™4% of f..

he ="

a
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TABLE 1
Cur-OFF FREQUENCIES IN GHz FOR A CHIRAL WAVEGUIDE WITH DIAMETER
79 mm, AND €z = 1.01 X 10711 C/Vm, €., = 1.06 x 10~1!

C/Vm, pr = —w2.54 x 10716 A/V AND &, = w2.55 x 1016

A/V. THE Cut-OFF FREQUENCIES FOR THE 1%, MODES ARE

THE SAME AS THOSE FOR THE 14, ,, MODES. FOR COMPARISON,

THE Cur-OFF FREQUENCIES FOR A WAVEGUIDE FILLED WITH A
HOMOGENEOUS, NONCHIRAL MEDIUM WITH € = €5, ARE ALSO GIVEN

T5; 2.08|Tys 4.23|Ty3 6.03
TEq; 2.08|TMyy 4.33]TE5 6.03
Toi 2.65|Toy 4.33|Tps 609
TMy 2.72|TEy; 4.331TMy, 6.24
Ty 3.45|Tyy 5.67|Ty3 7.58
TEgy 3.45|TM9; 5.81 TE9y 7.59
TE3; 4.75|TMgq 7.22

Using the parameters from Section II and a waveguide
radius of ¢ = 39.5 mm in (3) yields the cut-off frequencies
for the first few modes as shown in Table 1. The cut-off fre-
quencies for a waveguide filled with a homogeneous, nonchiral
dielectric with € = ¢, are given for comparison.

There is a close correspondence between the cut-off frequen-
cies of the chiral waveguide and the nonchiral waveguide, as
can be expected for the small values of the chirality parameters
used here. (Caveat: consideration of only the first two decimals
will lead to the incorrect conclusion that the correspondence is
exact.) The field distributions will be similar for modes with
closely related cut-off frequencies. The fact that each nonchiral
mode is paired with a chiral mode, indicates that the solution of
(3) yields all the modes in the chiral waveguide. In accordance
with propagation in isotropic waveguide it thus follows that
the dominant modes are T7; and 717, .

IV. ROTATION OF THE POLARIZATION PLANE

From the expressions for the fields inside the waveguide
(13) to (15) it follows that the 7%, and 7Ti; modes have
the same field distribution on the interface, one rotating
clockwise and the other anti-clockwise on this plane. As the
field distribution of these two modes closely resemble that
of the TE;; mode, it may be assumed that these two modes
will be excited with essentially equal amplitudes by a TE;;
mode incident on an air—chiral interface inside the waveguide
and that only extremely weak higher order modes will be
excited. The rotation is therefore caused by the difference in
the propagation constants of these two modes only. As can be
seen from the ¢- and z-dependence, the ¢-distribution rotates
by §'z radians in the clockwise direction for the 73; mode,
and in the anti-clockwise direction for the 73, mode. Thus
the rotation of the polarization plane for the sum of these two
modes is

¢rot = % (ﬂi - IBIT) 4@

radians per meter. The positive ¢ direction is defined as for
the conventional polar angle.
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Fig. 3. Schematic representation of the waveguide.

V. THE EXPERIMENT

The antennas of the experimental system were designed to
excite or receive a linearly polarized field along a centerline of
the waveguide cross-section and to act as transitions between
the coaxial cables connected to the network analyzer and the
waveguide containing the sample.

Each antenna was a thin microstrip dipole with length about
70 mm, about 90% of the waveguide diameter, made on
a thin dielectric substrate by photolithography. The dipole
was connected, without balun, to a semirigid coaxial cable.
It was established by free-space pattern measurements and a
waveguide cross-polarization measurement that a balun was
not necessary. The coaxial feed passed through a 28-mm layer
of polystyrene and a 45-mm layer of absorbing material, to
minimize multiple reflections, before going through a ground
plane that was attached to the end of the waveguide. The
resulting structure is round and fits snugly in the pipe, allowing
it to center itself as it is turned.

Both antennas are placed in air filled, thus nominally “free-
space,” regions of the guide, on either side of the chiral
crystal. Thus the transmitting antenna will strongly excite the
dominant TE11 mode. In the empty waveguide the lowest
higher mode that can be excited by a balanced antenna is the
TM;; mode. This corresponds to the 772 mode which will
not propagate at frequencies below 4.2 GHz in the crystal,
and in the free-space section its cut-off frequency will be even
higher. Thus, provided the frequency is limited to below 4.2
GHz and the antennas are well balanced, higher order modes
will not have a significant effect on the measurements. The
resulting theoretical rotation, calculated between 2.2 and 4
GHz, is shown in Fig. 8.

A waveguide was made of a 4 m length of aluminum pipe
with inside diameter 79 mm cut into three lengths as shown in
Fig. 3 and connected using flanges which allowed the sections
of pipe to be flush with each other. When measuring a rotation
angle of 10°—which was the expected rotation at 3 GHz—the
component orthogonal to the incident polarization will be
about 15 dB lower than the component parallel to the incident
polarization. Thus it was required that, when exciting a TEq;
mode in the empty waveguide, the component orthogonal (the
cross-polarized component) to the incident polarization plane
must be more than 25 dB less than the component in parallel
to it. The final assembly had an isolation of 30 to 45 dB
with the incident field polarized in the region of four distinct
angles labeled ¢ = 0°,75°,180° and 255°. (The isolation for
other angles was worse, due to waveguide imperfections.) The
measured data were defined as the average of four individual

A /7

Absorber

sets of data where the measurement for each angle was done
with the transmit and receive antenna oriented at one of the
above angles, and then repeated with the receive antenna
rotated through 180°.

The crystal was constructed by embedding the prefabricated
chiral structures in a 79.5 mm diameter closed cell Polyfoam
disk. The lattice and orientation of the structures are shown in
Fig. 4. Each precut disk, 4.13 mm thick, was punctured using a
tool made with needles in all the hole positions. The structures,
cut and bent beforehand from phosphor-bronze wire, were then
hooked through the disks. The foam was flexible enough for
the bends to go through without any damage to either the
wires or the foam. This was done by hand by a number of
students. The disks dented slightly inwards to the thickness
corresponding to the length of the z-axis leg, keeping the
z- and y-axis legs in approximate registration. Each disk
contained a small notch to allow alignment. These disks were
alternated with 5.17 mm thick spacers and the whole crystal
was glued together with a contact spray in sections of about
200 mm long. A thin plastic tape was wound round the
full circumference to ohmically isolate the outer structures
from the waveguide wall. It further compressed the slightly
oversized disks allowing the crystal to slide into the waveguide
without too much friction. Photographs of the construction are
shown in Fig. 5.

VI. RESULTS

Fig. 6 shows the copolarized electric field measured by the
receive antenna when oriented at an angle, ¢, relative to the
polarization of the incident mode. The measurement was done
at 3 GHz with and without the 2 m long crystal in place.
The shift caused by the chiral activity can clearly be seen.
The pattern follows the sinusoidal distribution expected for a
linearly polarized field, with the depth of the nulls indicating
that both fields are highly linearly polarized. It can therefore be
assumed that there is very little corruption due to higher order
modes. This assumption applies through the whole frequency
band between 2.4 and 4 GHz.

The amplitude of the wave after propagating through the
chiral medium is about 1 dB lower than for the empty
waveguide, due to losses in the medium. This attenuation does
not significantly affect the experimental results, although the
analysis was done for a lossless medinm.

In Fig. 7 the magnitude of the field transmitted through
the crystal is plotted as a function of frequency for various
angles of the receive antenna. These graphs shows clearly the
“rotatory dispersion” first viewed by Arago and Biot in 1811
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Fig. 4. Disklike building element of the crystal. Only the thick lines. are
visible from the front of each disk. The thin lines are at the back of the disk.

and 1812 [34] since it is evident that the higher the frequency,
the higher the rotation of the null position. The angle ¢ in the
figure indicates the amount by which the receive antenna is
rotated away from its “null” position in the empty waveguide.

The rotation angle as function of frequency was measured
in two different ways. A direct mechanical measurement was
obtained by searching for the transmission null and reading
the angle from a degree scale on the back of the antenna with
0° corresponding to the null position for the empty guide. The
angle was also computed from the amplitude and phase of the
measured transmitted E, and E, components, by applying
the polarization ellipse theory [35, pp. 19-21]. While the
mechanical positioning error is estimated to be about 1° to
2° for arbitrary angles, it is possible to align the antennas
very precisely in the +90° orientations by searching for the
null in the empty waveguide—thus the “computed” rotation

angle is presumably more accurate than the mechanical one.

In Fig. 8 both measurements are compared with the theoretical
predictions.

The transmission (.S21) measurements were made using an
HP 8510C network analyzer. Calibration was done with the
empty waveguide and a 3.5 ns time domain gate was employed
to reduce the effect of multiple reflections in the waveguide
and transitions.

VII. DISCUSSION OF THE RESULTS

Scaling of the theoretical prediction reveals that the dis-
crepancy between the measurement and original prediction is
around 13%. This factor is almost constant over the entire
frequency band—thus the circular birefringence of the arti-
ficial crystal is accurately predicted with an apparent error
of approximately 13% in the numeric values of the medium
parameters. There is a slight deviation from this frequency
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Fig. 5. Two 1 m long sections of the crystal. The chiral hooks are mounted
in the dark disks, and the white disks act as spacers. The other photograph
shows the orientation of the chiral hooks on the surface of a disk, and the
grooves in the edge of each disk for registration purposes.

Electric Field (dB)

-- Chiral

0 180
o (Degrees)

Fig. 6. The solid graph shows the copolarized component of the transmitted
electric field measured with the receive antenna oriented at the angle ¢ relative
to the incident polarization direction in the empty guide. The dashed graph
was obtained at 3 GHz for a wave propagating down the waveguide when
filled with the 2 m long crystal.

behavior below 2.6 GHz and above 3.8 GHz which is probably

due to the time domain gating applied to the measurements.
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Fig. 7. The amplitude of the copolarized electric field as a function of
frequency with the receive antenna at different angles of rotation. The angle
¢ represents the angle by which the receive antenna is rotated away from its
null, the cross-polarized position of the empty waveguide. (These angles are
found by averaging the different measurements.) The crystal is 2 m long.
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Fig. 8. Comparison of theoretical and measured rotation angle, ¢ro¢. The
crystal, with the parameters given in the paper, is 2 m long. If the quadrupole
- is ignored in the theoretical predictions, the predicted rotation would be
approximately half of the value given here. ‘

In seeking the cause of the discrepancy there are a number
of possible error sources that need to be evaluated [15].
Since the frequency dependence is accurately predicted the
fact that the multipole moments were computed using a
quasistatic technique [19] probably does not yield a significant
contribution to the error. The multipole moments of the single
structures were computed using a thin-wire technique which,
when compared to a body of revolution code for the test case
of a straight dipole, yielded an error of about 3% [15, 19].
A significant error is caused by the fact that the structures
which fall partially out of the circle shown in Fig. 4 could
not be incorporated in the physical disks—there are in fact
6% less elements than required to yield the volume density
used to calculate the parameters. A further error is caused by
the alignment of the structures on the crystal lattice. In an
isotropic or “random” medium the contribution of the electric
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quadrupole is averaged out. The slight deviations from the
prescribed lattice, for example a slightly rotated structure or
one with a z-leg not perfectly perpendicular to the disk surface,
can be considered random and will thus tend to decrease the
contribution from the quadrupole term. It also decreases the
effective length of the legs—which can have a significant
effect as shown in the next paragraph.

One of the largest error sources is the uncertainty in the
lengths of the structure legs. It was found by numerical
experiment that a length change of 0.1 mm on the z- and
y-legs can change the result by as much as 10%. As the
manufacturing process resulted in the leg on one side being
sharp, there is an uncertainty as to what an equivalent length
for a flat end would be. The middle of the 0.2 mm long sharp
section was used, and this possibly overestimated the length
of a leg with a flat end. (The end-cap yields a contribution of
almost 20% and in the case of the sharp point it is physically
removed from the geometry [19].)

Most of the significant errors were shown to contribute
toward the measured rotation being less than predicted. As
the effect of the electric quadrupole and the magnetic dipole
are approximately equal, ignoring the quadrupole would lead
to a theoretical prediction of about half the present one.
Therefore the measured data lie much closer to the prediction
with the quadrupole included than without it—even without
considering the fact that the errors tend to reduce the measured
rotation.

VIII. CONCLUSION

Chiral or optical activity is a second order effect involving
the electric quadrupole and magnetic dipole moments [13],
yet the scattering from a single structure is completely: dom-
inated by the first order electric dipole field. Further, the
field .of an individual electric dipole may, in general, also
have components orthogonal to the electric field which will
contribute to the rotation of the forward scattered electric field.
Nevertheless, in a perfect isotropic or a uniaxial medium,
the electric dipole contributions will cancel exactly. Since
the dipole moment is so dominant in the scattering from a
single structure the question arises whether, for a practical,
and thus imperfect, anisotropic medium such as the 422 point
group crystal considered here, small errors in the alignment
of the hooks might not yield electric dipole contributions to
circular birefringence in the same order as the scattering by the
magnetic dipole and electric quadrupole moments. For a single
cell consisting of four rotated elements this might certainly
be the case. However, for a macroscopically homogeneous
medium, consisting of many thousands of cells, the random
error due to the electric dipoles of wrongly aligned structures
will tend to cancel each other while the effects due to the
magnetic dipoles and the electric quadrupoles will always
add—and thus dominate.

A very dilute medium, with low optical activity, was
considered to simplify the numerical modeling. For a dense
medium a more involved calculation of the multipole moments
of a single element would be needed to account for the
influence of the neighboring elements but the effect of the
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electric quadrupoles would still be comparable to that of the
magnetic dipoles. This is a fundamental theoretical fact [12].

A fully dynamic numerical model would be required beyond
the long wavelength regime. The implication for the multipole
description of the medium properties and the validity of its
representation as a continuum has however not been studied.

Circular dichroism would occur in composites with signifi-
cant conductor and dielectric losses. In this work it is assumed
that such losses are negligible but the formulation of Raab and
Cloete [13] allows for them to be incorporated.

The good agreement between the theoretically predicted and
measured rotation angle as function of frequency has provided
convincing experimental support for the contention [13] that
a physically sound theoretical description of anisotropic chiral
media must take the electric quadrupole term into account.
This is also consistent with the theoretical fact that electric
quadrupole moments need to be included with magnetic dipole
' moments to guarantee that the medium parameters are inde-
pendent of the arbitrary origin to which the multipoles are
referred [12].

APPENDIX
CALCULATING THE FIELDS IN A WAVEGUIDE

In this Appendix the simultaneous solution of Maxwell’s
equations is considered

V x B =—jwB ;)
V x H =jwD ©)

and the constitutive relations

D=e¢-E+j¢ B )
-, T = =
H=3j¢ -E4+u]'B ®)
where
€xx 0 0 _ gwm gzy 0
€= 0 () 0 f = _fwy &mm 0
0 0 €z 0 0 fzz

subject to the boundary condition, £, = 0 at »r = a, for a
general uniaxial medium inside a waveguide. This yields the
fields inside the waveguide in terms of an integer parameter,
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n, that must be chosen and the constant of propagation, (3,
that is found by solving the boundary condition, E;, = 0
at » = a. The constitutive relations as defined here remain
valid for both Cartesian and cylindrical vectors, thus since the
boundary conditions are cylindrical, this form is used here.

With an assumed z-dependence of e~7#* it is a simple
matter to express B, and By in terms of the components
of E using the - and ¢-components of (5). This can be
substituted in the constitutive relations and then into the r-
and ¢-components of (6) to find E, and E4 in terms of E,
and B,. Then the z-components of the two Maxwell equations
yield two equations which can be solved for V2E, and VB,
to obtain

ViE, + b E, + jbaB, =0 )
V;B. + jbsE, + byB, =0 (10)
where
k3 = eaatiow® — B2
ezzk§

b= 208
! €z T ga%yl//o
by = k%(&xw + €zz) + 2ﬂ§zw(/8 + jgw'yll'ow)
€xg + fa%y,uo

k?}(gww + gzz) + 2ﬂ§wm(ﬂ - jllowgzy)

b3 = —€zzlho 2
€z + ga}yl‘&o
42EE Zz+k2 :l:m+ ZZ2

S i L (S

€xa + €2y o

Similar differential equations for a medium containing
sources were obtained by Olyslager et al. [36] who then
decompose the sources into their TE and TM parts. In the
case of anisotropic media the simple Bohren decomposition'
F‘; =FE+ jnﬁ , used for example in [21], no longer applies.
Here the separation is done by linearly combining (10) and
9) as follows:

VHE, — jfB.) + (b1 + fb3)E, + j(bs — fbs)B, =0
V2(E, — jgB.) + (b1 + gb3)E. + j(bs — gbs) B, =0.

UActually a similar form was introduced in 1907 by Silberstein. See [37,
p. 321

kr=+bi+ f'
ng\/bl + g

bt = k3 (xe — €22) + 410B2Enalee + pok5(Eon + £22)2 + b5
p L
g, _ b3g _ k%(eacm - 6zz) + 4Moﬂ2€mm€zz + Nok%(gzc:c + §zz)2 - b5
2¢,5
by ezzk%
€xx
b 2+ R (e 4 622)

6a:w

b5 = \/(k%(em:t + 6zz) + 4Moﬂ2£mm£zz + ﬂok%(gmm + gzz)2)2 - 4Ezz6zz(k?; - 4MZW2,82££$)
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The new equations will be independent of each other provided
that f # g. Substituting F = E, —jfB, and G = E, — jgB,
yields separated equations on condition that

by — (b4 —bl)f+b3f2 =by — (b4 - b1)g+bsg2 =0

which gives the same two possible solutions for f and g. The
requirement f # g can be met by selecting one solution for
f and the other for g

by — b1 + /(bs — b1)? — 4babs

I= 2b3
by — by — \/(bs — b1)% — 4bobs
9= 2bs

such that

(11)
12)

V2F + (b1 + fb3)F =V;F +k3F =0
V2G + (b1 + gb3)G =ViG + k2G = 0.

The general solution of this equation in cylindrical coordi-
nates is

ArJ, [kr]e?”® + AyY, [kr)e?”?

where k = ky for the solution of (11) and k = k, for that
of (12). J, and Y, are the Bessel functions of the first and
second kind of order v. Since the solution must be continuous
in ¢ and remain bounded at » — 0, it can be simplified to

F = A1 Jn [kfr]e]n¢
G = Ay Jo[kgr]e?™®

where n = 0,+1,4+2,£3,--.
Setting £, = 0 at r = o and realising that F, is proportional
to fG — gF yields

Jo 1k
A=Y [kra) .

B fJn[kga]

from which F' and G can be found. This yields the fields
which, after scaling and using Bessel identities to avoid
singularities, can be written as

E. :jA{Jn[k‘ga](h1Jn_l[kffr] + h2Jn+1[kf’r'])
—Jplksal(h3dn-1lkgr] + h4Jn+1[kgT])}ea(n¢—,@z)
(13)
Ey =—A{Jnlkgal(hyJn_1[ksr] — hoJni1[ksr])
—Jnlkpa)(hsJn_1lkgr] — hadni1lkgr]) }e?¢=F%)
(14)
E, =2hoA{J,[ksalJulkr] — Julkga] Julksr]}ed(é—02)
(15)
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where

ho =ba(kj — 4p2w®B2E2,)

hy = k(kG — 240w BEaz)(whs f + b2
— powbs (€ + &z + 5Eay))

hy =k (kg + 200wBsz)(whs f — baf
— towba €z + €2z — Gay))

hs =kg(kj — 20w BExz ) (whsg + baf3
= powbs(Eaz + Euz + GEay))

ha = kg (K} + 2420w 30z) (whsg — b2
— prowba (o + &2z — §€ay))

for the general uniaxial medium. For the medium discussed
in this paper, &, = 0, such that the constants bs, ky, etc. are
given by the simplified equations shown at the bottom of the
previous page.
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